
Table of Contents

Displaying a Time Gage 1

Displaying Status Lines 8

Displaying Japanese Characters 15

Using the SET_REG Macro 18

Packing Color Data 20

Displaying a Time Gage

Displaying ~ Speed Gage

How fast is your program? That is a question every programmer
wants to know.

A standard television updates the screen 60 times a second. The
period when the beam is moving from the bottom, back up to the
top is called the Vertical Blanking Period. The HuC6270 is
normally set to cause an interrupt at the beginning of this
period (VSYNC).

Programs for the Hu7 system generally use this interrupt as a
master timer for the game.

main_loop:

jsr vsync_wait ;Wait for VSYNC

;Update sprites and background, etc.

bra main_loop

The main loop should require less than 1/60 second. If it is too
slow, the sprites and background may not be displayed correctly.

The HuC6280 runs at about 7.19 M Hertz (million
In one second, there are 60 VSYNC pulses. Thus
machine cycles per VSYNC. This means that the
shorter than about 120,000 cycles in order to
second.

cycles I second).
there are 119,904
main loop must be
finish in 1/60

You could go through your program and look up the number of
cycles required for each instruction in the HuC6280 Software
Manual, but there is a lot easier way to check the speed of your
main loop.

We can write a very small program that will display a color bar
on the side of the screen that represents the amount of time our
main loop requires for each VSYNC cycle, much like a stereo
displays decibels for music. As we handle more sprites and write
more background data, we can see the amount of time required in
crease.

The method involves setting the "border color" in the HuC6260
Video Color Encoder. There are a total 32 blocks stored in the
Color Table RAM. Each block has 16 colors. The first 16 blocks
are for background data, the last 16 blocks are for sprite data
(see H6-4). Color 0 of the first sprite block (block 16) is the
border color.

Note that color o of block 0 (the first background block) is the
background color of the screen. Color 0 of all the remaining 31

1

blocks are always "clear". So changing color 0 of block 16 will
not effect the color of any sprites.

The border color appears around the edge of the display screen.
The width of the screen is set with the HDW field of the HDR
register (see H7-10). Normally we set this field to $1f, which
corresponds to 32 characters across the screen. If we set the
width of the screen a little narrow, we can see the border color
better.

For example, we can set the screen to 31 characters wide by
setting HDW to $1e. This will make the right 8 pixels of the
screen blank. The color of this blank area is set with the
border color (color 0 of block 16).

The HuC6260 uses 9 bits for color data. It stores the data in a
word of memory in the Color Table RAM as follows:

xxxx xxxG GGRR RBBB

The Color Table RAM is addressed by word. Each block requires 16
words. The first 16 blocks of background color data require 16 *
16 = 256 = $0100 words. This is the CTR address of color 0 of
block 16.

The HuC6260 registers are located at physical addresses starting
at $1fe400. We access them with logical addresses starting at
$0400 when MPRO = $ff (see H8-9).

If we want our color bar to be blue, for example, the program
could look as follows:

TEKA_ADDR_LOW equ $0402 ;Log addr of Teka addr
TEKA_ADDR_HIGH equ $0403 ;
TEKA_DATA_LOW equ $0404 ;Log addr of Teka data
TEKA_DATA_HIGH equ $0405

CTR_BC_ADDR equ $0100 ;Color Table RAM address
;of Border Color

COLOR_BLUE equ $0007 ;Color data.

set_bc_blue:

Set HuC6260 (Tekkannon) Address to first color of block
16 (Border Color).

lda #low CTR_BC_ADDR
sta TEKA_ADDR_LOW

lda #high CTR_BC_ADDR
sta TEKA_ADDR_HIGH

2

'

Set the border color to blue.

lda #low COL_BLUE
sta TEKA_DATA_LOW

lda #high COL_BLUE
sta TEKA_DATA_HIGH

rts

Set border color to black.

set_bc_black:

lda #low CTR_BC_ADDR
sta TEKA_ADDR LOW

lda #high CTR_BC_ADDR
sta TEKA_ADDR_HIGH

cla
sta TEKA_DATA_LOW
sta TEKA_DATA_HIGH
rts

We set the border color to blue after we return from the VSYNC
handle routine. The border color remains blue as our program to
update sprites and background runs. When the program finishes,
we come back to the beginning of the main loop. Then we set the
border color back to black. The color remains black while we are
waiting for the VSYNC handle routine to finish.

main_loop:

jsr
jsr
jsr

set_bc black
vsync_wait
set_bc_blue

Set border color to black
Wait for VSYNC
Set border color to blue

; Update sprites and background, etc.

bra main_loop

The screen height represents one VSYNC period (1/60 second).
the blue bar gets down to the bottom of the screen, we know
our main loop is too slow.

3

If
that

<

ry\o-'\
1

9.ro• f'trv--.. ~.'11'\..'s. \.. ~ J.
\!/ €""' ~t. ~ {5a.-..ll.o~ C&~6.r ~ \o..~ ~

..liJIIV'? 4:-o VS1A1c._·\!J~I\

Wo-\-\-\ II\~ ~,. \15 y ;J c_.

(T cA '~ TL't')'\c..)

<e-- VS'INC

We can test our "speedometer" by calling a routine from our main
loop to waist time.

main_loop:

jsr
jsr
jsr

set_bc_black
vsync_wait
set_bc_blue

jsr waist_time

bra main_loop

Set border color to black
Wait for VSYNC
Set border color to blue

<waist_time> will execute a block transfer (tai) to fill an
unused bank with zeros. In this example I am using bank $10.

4

_zero dw $0000

waist_time:

Save MPR 2 and set it to bank $10 ($020000 physical)

tma2
ph a

Ida #$10
tam2

Fill bank $10 with zeros.

tai _zero,$4000,$2000

Restore MPR 2 and return

pla
tma2

rts

The tai instruction requires 17 + 6x cycles, where x is the
number of bytes transferred (see S8-89). Here we are transfer
ring $2000 = 8,192 bytes. So the instruction requires 49,169, or
nearly 50,000 cycles. Recall that in one 1/60 second VSYNC cycle
there are about 120,000 machine cycles, so this transfer takes up
nearly half of the display cycle. On the screen, we can see the
color bar come ~ almost half way down.

Here's another method to determine if our main loop is longer
than 1/60 second. Normally, we use a flag to tell our VSYNC wait
routine that the VSYNC interrupt has occurred and the VSYNC
handle routine has executed.

vsync_wait:
rmbO vsync_flag

vsync_wait_loop:
bbrO vsync_flag,vsync_wait_loop

rts

vsync_handle:

handle the vsync

smbO
rti

vsync_flag

5

But if our main loop is too long, the VSYNC interrupt will occur
somewhere in our program, before we call <vsync_wait>. When we
do finally call <vsync_wait>, we may have to wait almost 1/60
before the next VSYNC.

We can modify the above method to tell us if the VSYNC
occurred before we got to <vsync_wait>. Instead of a
will use two counters.

vsync_wait:

'

Check if the main loop was too long.

lda
cmp
bne

vsync_count
vsync_old_count
main_loop_too_long

Main loop was OK.
Wait for vsync handle routine to finish.

vsync_wait_loop:

'

lda vsync_count
cmp vsync_old_count
beq vsync_wait_loop

The vsync handle routine has finished.
Set old counter to current counter.

sta
rts

vsync_old_count

The main loop was too long!

main_loop_too_long:
sta vsync_count
bra vsync_wait_loop

vsync_handle:

Handle the vsync.

inc
rti

vsync_count

interrupt
flag, we

In our initialization routine (reset) we should set <vsync_count>
and <vsync_old_count> to zero. Normally, when we get to
<vsync_wait>, <vsync_count> and <vsync_old_count> are the same.
In this case, we just wait in the loop until <vsync_count> is
incremented in <vsync_handle>.

6

But if the main loop is too slow, a VSYNC interrupt will occur in
the middle of our program. The <vsync_handle> routine will run,
and <vsync_count> will be incremented. When we get to
<vsync_wait>, <vsync_count> will be one greater than
<vsync_old_count>.

Note that in many cases, for example during program initializa
tion, it is OK if a VSYNC interrupt occurs in our program. In
this case, we can continue waiting for the next VSYNC.

From SD, run your program until you get to a stage in which you
think the main loop might be too slow. Then hit a key to halt
the program. Set a break point at <main_loop_too_slow> and con
tinue running the program. If your main loop is too slow, SD
will halt at the break point.

With this method of using two counters, it is possible to utilize
all of the VSYNC cycle, without wasting time waiting for the
VSYNC handle routine to run.

7

Displaying Status Lines

Displaying Status Lines

Unlike the SuperGrafx and other game machines, the TurboGrafx has
only one background screen. This makes displaying a status line
on a scrolling background a little difficult.

There are many methods to display status lines on a scrolling
background, but they all involve setting the Scan Line Detection
Register on the Video Display Controller (HuC6270) to cause a
raster interrupt, and setting the Scrolling Registers to display
the area of VRAM where the status line is actually written.

Note that in many scrolling games, the game status is displayed
with sprite data (e.g. "Bonk") This is much easier than using BG
data, and it only uses a small part of the screen, making most of
the screen visible for playing.

But for many games (e.g. "J.J. and Jeff"), a status line is pref
erable.

In this example, we will assume that we want to make a horizontal
scrolling background game (Side-Scroller) with a status line on
the bottom of the screen. We will not worry about vertical
scrolling for the moment. Further, we will use the 4 by 1 screen
mode (SCREEN = 2 in Memory Access Width Register, see H7-9) so
that we do not have to write the background data while the player
is moving.

Note that in the 4 by 1 screen mode, the CG area of VRAM requires
$1000 words.

With this method, when the player enters an area, the four
screens are written all at once. The disadvantage of this system
is that backgrounds are limited to only 4 screens. The advan
tages are that it is very simple to program, and the background
is only written when the player enters a new area. This frees
the processor while the player is moving in the area to move
sprites.

When the player enters a new area:

1. Turn the screen off.

2. Write four screens of background

3. Turn the screen back on

4. Move in the 4-screen area until player exits.

5. Go to 1

We normally set the Control Register (CR) to interrupt our pro
gram when the beam begins moving from the bottom of the screen
back to the top (VSYNC). But we can also set it to interrupt

8

when the beam is moving from the right of the screen, back to the
left of the next line (HSYNC). We specify which line to inter
rupt on with the RCR register (see H7-7).

The system keeps an internal scanning line counter, which counts
the lines on the screen as the beam sweeps from the top to bot
tom. When the value of RCR matches this counter, an interrupt
(IRQ!) will occur, and bit 2 of the Status Register will be set
(See H7-4).

In our IRQ! handle routine, we must look at the Status
(SR) to see whether the interrupt was caused by VSYNC
(see H7-4).

Register
or HSYNC

AR
SR
7UP_LOW
7UP_HIGH

equ
equ
equ
equ

irql_handle:

$0000
$0000
$0002
$0003

Save the environment.

ph a
phx
phy

;log address of HuC6270 Address Reg
;log address of HuC6270 Status Reg
;log address of HuC6270 low data
;log address of HuC6270 high data

Check SR to see whether VSYNC or HSYNC caused interrupt.
bit 2 - Scanning Line Detect (HSYNC)
bit 5 - Vertical Blanking Period Detect (VSYNC)

Ida SR
sta sr_buf

;load HuC6270 Status Register
;save in zero page.

bbs2 sr_buf,hsync_handle
bbs5 sr_buf,vsync_handle

;check bit 2
;check bit 5

Otherwise, something else caused interrupt!

if DEBUG
brk
nop

endif

<sr_buf> is a byte of zero page memory. Zero page memory is
handy because we can use the bbs instructions.

We want to display our status line on the bottom of the screen.
Normally, we set the screen resolution to 240 lines horizontally
(VDW field of VDR = $ef, see H7-10 and H7-13). This means there
are 240 I 8 = 30 = $1e character lines on a screen. So the
bottom character line is at $1d.

9

But if we write our status line at $1d, it will be down off the
bottom of the screen. So we should move it up a couple of lines
to $1b, and make the last two character lines blank.

Note that we can test this position in CE by getting into the BG
mode and writing horizontal lines at $1b to $1d, then set OUT
on.

We want the system to interrupt at the beginning of character
line $lb. This is scan line $lb * 8 = $d8. But the Hu7 always
sets the internal scanning line counter to 64 at the beginning
of a vertical sweep (see H7-7). This means that if we set the
RCR to a number less than 64, a raster interrupt will never
occur.

Thus we should always add 64 = $40 to the scan line number that
we want to interrupt on. In our case, we want to interrupt on
scan line $d8. So we should set RCR to $d8 + $40 = $118.

set_reg
set_data

RCR
$0118

When we want to disable the raster interrupt, for example when we
the player enters a new area and we want to write a new back
ground, we can set RCR to zero.

We can actually write the status line anywhere in the BAT area of
VRAM that is not being used for the background. When we hit our
raster interrupt, we will set the BXR and BYR scroll registers to
display this area of VRAM at the bottom of the screen.

For this example, we will write our status line at character
position x=$00, y= $lb. This is where it would go if we were not
scrolling the background. Since we are using the 4 by 1 screen
mode, there are 4*32 = 128 = $80 characters on a line. So line
$lb will start at VRAM address $lb*$80 = $Od80.

Note that you can write into this area of VRAM from SD with the
VF command. For example, you can load a bank of characters
starting at VRAM address $1000. If you have drawn something in
character number 1 with CE, you can put it on the status line,
with color o, by setting VRAM as follows (see H7-14):

>VF d80 120 0101

You can also use the VE and VD commands to edit and dump this
area of VRAM.

10

In our interrupt handle routine, we simply set the
Register to zero. This will have the effect of
screen back at the beginning of the area.

BGX Scroll
putting the

The BGY Scroll register is a little more complicated. We want to
display the area of VRAM starting at character line $lb. This is
scan line $1b*8 = $d8. Thus we should set BGY to $00d8. But
because we are updating BGY during display (not during VBLANK),
we should set BGY to $00d8-1 (see H7-7).

We also must turn off the all the sprites when the beam gets down
to the status line so that sprites are not displayed "in front"
of the status line.

Thus the code in our IRQl handle routine could look as follows:

STAT_BGX
STAT_BGY

hsync_handle:

equ
equ

$0000
$00d8-1

Set scroll registers to display area of VRAM where
the status line has been written.

stO
stl
st2

sto
stl
st2

Turn off sprites.

rmb6
lda
sto
sta

#BGX
#low
#high

#BGY
#low
#high

cr_buf
cr_buf
#CR
7UP_LOW

bra irql_exit

11

STAT_BGX
STAT_BGX

STAT_BGY
STAT_BGY

;reset bit 6 of CR

We have
buffer
current
read the

reserved a word of zero page memory as a Control Register
<cr_buf>. This is because it is impossible to read the
value of the CR in the HuC6270. It is only possible to
Status Register.

When we exit from the IRQl handle routine, we should always
restore the AR in case the interrupt occurred between a <set_reg>
and a <set_data> instruction.

'

Reset the HuC6270 Address in case interrupt occurred
between a <set_reg> and a <set_data> instruction.

irql_exit:
lda
sta

ar_buf
AR

Restore the environment.

ply
plx
pla

rti

When the beam gets down to scan line 216 = $d8, the HSYNC inter
rupt handle routine will set our scroll registers to display the
area of VRAM where we wrote our status line.

Now when the beam goes from the bottom of the screen back to the
top to start a new vertical sweep, we need to reset the scroll
registers back to their game values, and turn the sprites back
on.

vsync_handle:

Set X Scroll Register to game value.

sto #BGX
lda bgx_val
sta 7UP_LOW
lda bgx_val+l
sta 7UP_HIGH

Set Y Scroll Register to game value.

stO #BGY
lda bgy_val
sta 7UP_LOW
lda bgy_val+l
sta 7UP_HIGH

12

Turn the sprites back on

smb6 cr_buf ;set bit 6 of CR
lda cr_buf
sto #CR
sta 7UP_LOW

bra irql_ exit

Here <bgx_val> and <bgy_val> are defined in DSEG and set in the
game as the player moves around the area.

This system works OK if you do not want to do any vertical
scrolling. Note, however, that we can get at least two screens
of vertical scroll very easily by using the 4 by 2 screen mode
(SCREEN field of MWR = 6, see H7-9). The CG area will now re
quire $2000 words of VRAM.

We should write our status line somewhere out of the way in the
CG area. For example, we could place it at the bottom three
lines of page 5. There are $20 lines per page, so there are $40
lines in all. The status line should be written at lines $3d to
$3f.

Note that the RCR setting will be the same, as we still want the
status line to appear at the same place on the screen. Also,
STAT_BGX will still be zero because we placed the status line in
column $00.

But we
This is
STAT_BGY
at $3d *

have moved the status line down to character line $3d.
scan line number $3d * 8 = $01e8, so we should set

to $Ole8-1. The VRAM address of the status line will be
$80 = $leBO.

Note that now we can use all available VRAM except for the three
lines where the status line is written.

The height of the display screen is 27 characters = 27 * 8 = 216
lines. With two vertical pages, there are a total of 32 * 8 * 2
= 512 lines of VRAM to scroll in. 3 character lines , or 3 * 8 =
24 lines are used for the status line. Thus we can scroll 512
216 - 24 = 272 lines vertically when the display screen is over
the status line area of VRAM.

But when BGX is equal to or greater than $20, we do not have to
worry about the status line at the bottom, so we can scroll the
full 512 - 216 = 296 lines.

This gives the player a fairly big area in which to move around.
If you want to scroll more than this, you will have to update the
background while the player is moving. These algorithms are a
little more tricky, especially if you want to display a status
line.

13

~00

CD {.:;--. ~ ® // \.!:;:.1

~/;
® © (j) ®

f/.4_-F ··' '· · ··pY/ . ~~- /-.~1
~.:.-:--- ,...-;:"i.:_ /,-:--">':;-~ -"--·/·L_·,rt;;.

f

14

Displaying Japanese Characters

Displaying Japanese Characters

Game developers who want to sell their games in Japan may want to
use Japanese characters for their messages. Though it is possi
ble to write the Japanese language with the Roman alphabet
("Romaj i"), it is difficult for Japanese people to read. Thus
Japanese characters are generally preferred.

There
kind
used
nese

are three kinds of Japanese characters.
of alphabet. "Katakana" is equivalent to

for writing foreign (e.g. English) words.
characters.

"Hiragana" is a
Hiragana, but is
"Kanji" are Chi-

For most games that do not have a lot of messages, Hiragana
Katakana only can be used. These characters can be made 8
by 8 dots, and can fit into a half bank (128 characters).

and
dots

We then make an include file (JAP.H) that defines the character
numbers:

a
i
u
e
0

ka
ki
ku
ke
ko

equ
equ
equ
equ
equ
equ
equ
equ
equ
equ

0
1
2
3
4
5
6
7
8
9

On down to 128. Then we make a message file (MESG.S):

mesgOO:
db ko,n,ni,chi,wa

This will say "konnichiwa'' (hello) in Japanese. At the bottom of
the file, we make a table of the message labels:

mesg_tbl:
dw
dw

mesgoo
mesg01

For however many messages we have. Then we must make a simple
display routine that, given the message number, will display the
message in Japanese on the screen.

15

Many PC Engine (HuCard) games use some Kanjis. Character sizes
are usually 16-by-16 or 12-by-12 dots. 64 16-by-16 characters
can fit into one bank. 100 12-by-12 characters can fit into one
bank. One bank requires 8 K bytes.

Some games use the remaining half-bank of characters used
Hiragana and Katakana. You can fit as many as 50 kanjis in
a bank. Some HuCard games use as many as 256 Kanjis. This
quires 4 banks for 16-by-16 characters.

for
half
re-

Of course character data to store Kanjis can be compressed like
any other kind of data. It is often possible to compress charac
ter data 50 percent.

For CD games that have a lot of messages (e.g. RPG games), it is
better to use more Kanji. There are many thousands of Kanjis
used in the Japanese language.

The TurboGrafx CD-ROM System stores the entire 8000 or so charac
ters that make up the JIS (Japanese Industrial Standards) Level
1. CD allows games to use so much memory.

The JIS system is convenient because it is used in Japanese word
processors. Thus defining each character like we did for Hiraga
na and Katakana is not necessary. We can simply use a Japanese
word processor to make the message file. Japanese word proces
sors output JIS "Shift" Code. The attached table shows the first
of eight pages of JIS codes.

The <EX GETFNT> routine in CD-ROM BIOS reads kanji character data
from the CD. The input is the JIS Shift Code. For example, JIS
Shift Code $938c will return a font pattern that looks something
like the following:

0123456789abcdef
0 0000000100000000
1 1111111111111110
2 0000000100000000
3 1111111111111110
4 1000000100000010
5 1000000100000010
6 1111111111111110
7 1000000100000010
8 1000000100000010
9 1111111111111110
a 0000000100000000
b 0000001110000000
c 0000010101000000
d 0000100100100000
e 0010000100001000
f 1000000100000010

This kanji means "East", symbolized by the red sun rising behind
a tree.

16

At Hudson, we have services available for all your translation,
localization, and voice recording needs. We will be happy to
assist you in your translation projects as our staff is fully
competent in Japanese, English, French, Spanish, and German.

Y7t- JIS JIS

813F 2120
814F 2130

~c 815F 2140
816F 2150

Cl 8180 2160 ?
8190 2170
819E 2220
··--··

?If
824F 2330
825F 2340 .

~
826F 2350

*
8280 2360
8290 2370

829E 2420

v 82AE 2430

0 82BE 2440

nt 82CE 2450

t.r. 82DE 2460
82EE 2470
833F 2520

tJ 834F 2530

~ 835F 2540

tJ 836F 2550

-r 8380 2560
8390 2570

-·

:¥3t
839E 2620

1) 83AE 2630
y 83BE 2640
7-* 83CE 2650

[:l 843F 2720

~
844F 2730

7
845F 2740

3t
846F 2750
8480 2760

* 8490 2770
889E 3020

7 88AE 3030
88BE 3040

Y7t- JIS JIS

K~\ (ecA'-\P-bk l)\S Levd l)
iJl!:p:J- P~ (JIS ~I 7j(~)

0 1 2 3 4 5 6 7 8 9 A 8 CDEF
? ! " - - ..

[SP[, 0 ' ' --
' ,·lo.~/1 9:~/0 ---/ -

"'-"' II I '' .. " () [J [J
{ } < > () r J w Jl [] +-±X
7=-:f=.< >~6co :. 6 'f • " 'C¥

$¢£% #&*@ §i:l*O e©<>
+D• l\A.V'T ?*:=r~<- l t= ---·-

0 1 2 3 4 5 6 7 8 9
ABC DEFG H 1 J K I. .. MN 0

PQRS TUVW XYZ
a b c d e f g h i j k I m n o

P q r s t u v w X Y Z
----··

~ ;I; ~· ~' ~ ? ~ ;t td :to :0• b~ ~ ~- <
(' yt Vf .:. .::' ~ <!' L l.>tf -lt -lt -t:- .:ft.::.
t.: 't> '6 ? "'? --::> 'L -c;· l: t•' ft. t.:::. IQ tJ (f) 11.

t:! I! D- rf cf..S-~~ .,..... .r< ..-{ ti t~!:' t! * :7J,

trco~~ ~I<PI1>.t J:GIJ-=5 .h6nb
.Oll.a-A-

7 7 -1 1 ') ry X .:C.;t;t:h ;h"""' t~· !I

!J'' 7' 1/ :::1 -::l -tt ·tf' '/ :; :;<., ?:' -l! ~· :; :;·· !"

1""7- :r· ';/ '/ ·;/ 7 7'. r F' :T =- :;1. * / ·"
..~.:.: .1~ \:: e:· t-'77 .. 7. ""~.....::* ;f~ ;f- " ~
)...;(.:£-;- i'.:o.::::t.a :1 7 !I /J... v p ? '7

-'f-::z.7:.-- ry•' "' ..,.

ABf' C:iEZH e IKI\ MNBO
f1PET T<l>XW n

a {3 r o e ~ 'f/ {) ' K. }. ~'- ~.~ e o

7CpfJr u ¢> X cp w

ABB fllEE)1{31111 I<Jl M H
Oil PC TY<t>X U tJ llllU bbl b 3
1051

a 6 B r Ll e e >K 3 H H K Jl M II

o n p c T Y tP X U 'I W LU b bl b 3

lOR

i!IT~:!!H ~i~ lit'!~ !t. J! ~ JU fffl)[{ tklfu1
Jt!!1.!~~ t'HE ~ l& ~i!JIIUtttfl ktiil~~~i~

~iOft~li!t ~ Hft ~ frll fj(~

0 1 2 3 4 5 6 7 8 9 A 8 CDEF

17

Using the SET_REG Macro

Using the SET REG macro

Most Hu7 programs define a macro to set the register on the Video
Display Controller (HuC6270).

set_reg MACRO
lda
sta
sto
ENDM

reg_num
#reg_num
ar_buf
#reg_num

In our program, if we want to write data to VRAM address $1000,
for example, we would select the Memory Address Write register
and set it to $1000.

MAWR equ

set_reg
st1
st2

0

MAWR
#$00
#$01

;HuC6270 write register

;set register
;send low byte
;send high byte

But why do we have to save the register number in <ar buf>? Lets
say we are not using the <set_reg> macro. In our program, we
would select the MAWR register to $1000 as follows:

stO #MAWR
st1 #$00
st2 #$01

It seems like this code would do the same thing. But the problem
comes up when a HuC6270 interrupt (HSYNC, VSYNC, etc, see IE
field of CR, page H7-6) occurs after the <stO> and before the
<st1> or <st2> commands.

sto #MAWR
<INTERRUPT>

st1 #$00
st2 #$01

If our interrupt handle routine sets the HuC6270 register, which
it probably will, the <st1> and <st2> commands will send data to
the wrong register.

Therefore, when we exit from our interrupt handle routine, we
should always reset the HuC6270 Address Register.

AR equ

irq1_exit:

$0000 ;log addr of HuC6270
;address register

Reset HuC6270 Address Register.

lda ar_buf
sta AR

18

Restore the environment.

ply
plx
pla

rti

Note that here, we are setting the HuC6270 address register by
sending the contents of the A register to logical address $0000.
This is physical address $1fe000 when MPRO = $ff.

This demonstrates the two methods for setting the HuC6270 regis
ters. Usually we use <stO> to set the register number and <stl>
and <st2> to set the low and high byte of the register. But
these commands only work with immediate data (see 88-80 to 82).

Thus when we must set the HuC6270 register from a memory value,
we must use logical location $0000 for the register number and
$0002 and $0003 for the high and low byte.

You must be careful not to use the <set_reg> macro inside the
interrupt handle routine itself, as this will reset the <ar_buf>.
This may cause very strange bugs in your program. Inside the
interrupt handle routine, you should set the register number
directly either with <stO> or using location $0000.

19

Packing Color Data

Packing Color Data

Color data for both sprite and background data from the CE paint
program is stored in .CCD (or .CCB or CCH) files. There are 16
pallets, each with 16 colors, in a .CCD file.

For example, the data for one color pallet might look like the
following:

dw $0000,$0038,$00F8,$01F8,$01D8,$01C0,$01C3,$01C7
dw $OOC7,$0007,$001F,$003F,$003B,$0092,$0124,$01FF

The red, green and blue components are assigned 3 bits each. The
9 bits are stored in a word of memory with the following format:

high byte:low byte
xxxx xxxG:GGRR RBBB

I

----1----
I I I I I Blue bit 0 I I I I I
I I I I Blue bit 1 I I I I
I I I Blue bit 2 I I I
I I Red bit 0 I I
I Red bit 1 I

Red bit 2
Green bit 0
Green bit 1
Green bit 2

Note that only bit 0 of the high-order byte is used. The seven
other bits are always zero. We can pack this data by storing
Green bit 2 for eight of the colors in a separate byte.

db $1f,$00,$38,$f8,$f8,$d8,$cO,$c3,$c7
db $03,$c7,$07,$1f,$3f,$3b,$92,$24,$ff

Here, each line has nine bytes. The first byte on line stores
the Green bit 2. The following 8 bytes on the line are the same
as the low-order bytes of the unpacked color data.

It is then very simply to unpack the data and send it to the
Color Table RAM on the Video Color Encoder (HuC6260). For each
group of eight colors, shift the high bit code byte. This bit is
Green bit 2.

How much memory have we saved? The unpacked data requires 2
bytes for each color. One pallet of 16 colors requires 16 * 2 =
32 bytes. 16 pallets in a .CCD file require 16 * 32 = 512 bytes.

Our packed data uses 2 * 9 = 18 bytes per pallet, thus 18 * 16 =
188 bytes per .CCD file. So we are saving 512 - 188 = 324 bytes
per .CCD file. If we are using one .CCD file for spite colors
and one .CCD file for background colors, we save 324 * 2 = 648
bytes. The packed data will require about 63 percent as much
memory as the unpacked data.

20

